THERMODYNAMICS OF SILVER-SILVER BROMATE, SILVER-SILVER IODATE, SILVER-SILVER SULPHATE, SILVER-SILVER CHROMATE AND SILVER-SILVER DICHROMATE ELECTRODES IN WATER + UREA MIXTURES AND RELATED THERMODYNAMIC SOLUBILITY PRODUCTS

UPENDRA NATH DASH, BANKA BEHARI DAS, UTTAM KUMAR BISWAL and TAPODHAN PANDA

Department of Chemistry, Bhadrak College, Bhadrak 765 100 (India) (Received 1 April 1985)

ABSTRACT

The standard potentials of the silver-silver bromate, silver-silver iodate, silver-silver sulphate, silver-silver chromate and silver-silver dichromate electrodes in four different compositions of water+urea mixtures at four different temperatures from 5 to 35°C have been determined from EMF studies of the cell: Ag(s), AgCl(s), KCl(c)//K_xZ(c/x), Ag_xZ(s), Ag(s) where x is 1 or 2, and Z is BrO₃, IO₃, SO₄, CrO₄ or Cr₂O₇. These values have been used to evaluate the transfer thermodynamic quantities accompanying the transfer of 1 g-ion of BrO₃⁻, IO₃⁻, SO₄²⁻, CrO₄²⁻ or Cr₂O₇²⁻ from the standard state in water to the standard state in water + urea mixtures. From the standard electrode potential values, the thermodynamic solubility products of Ag_xZ have also been computed in these solvents.

INTRODUCTION

In continuation of a study on the standard potentials of the electrodes of the first kind and second kind in aqueous, non-aqueous and mixed solvent systems [1-11], we now report the results of a determination of the standard potentials of the silver-silver bromate, silver-silver iodate, silver-silver sulphate, silver-silver chromate and silver-silver dichromate electrodes and associated thermodynamic parameters for the electrode reactions in different compositions of water + urea mixtures. During the course of these studies, besides obtaining the transfer thermodynamic quantities for the process, Z^{x-} (in water) $\rightarrow Z^{x-}$ (in water + urea), the thermodynamic solubility products of Ag_xZ have been evaluated in these solvents.

EXPERIMENTAL

The preparation of the solvents and the electrodes has been described earlier [5]. Potassium salts were the same samples as those used in a previous study [11]. Stock solutions of various potassium salts were prepared by dissolving the appropriate weighed amounts of the potassium salts in known volumes of water + urea mixtures of various compositions. Solutions for EMF measurements were prepared from stock solutions by the double-dilution method. Stock solvents as well as the solutions were preserved at low temperatures ($\sim 5^{\circ}$ C).

Preparations of the cell solutions, setting up of the cells, EMF and conductance measurements were essentially similar to the procedures described earlier [4]. All measurements were made over water baths at the required temperature with a precision of $\pm 0.1^{\circ}$ C. Constancy of the EMF readings to ± 0.2 mV for 1 h was considered the criterion of equilibrium. As previously, the study of cell (A) with a liquid junction was made.

$$Ag(s), AgCl(s), KCl(c) / / K_x Z(c/x), Ag_x Z(s), Ag(s)$$
(A)

RESULTS AND DISCUSSION

The standard molar potentials, E_c^0 , were obtained by the method of extrapolating [1] the auxiliary function, $E_c^{0'}$, given by [1,3]

$$E_{c}^{0} = E + E_{Ag,AgCl}^{0} + (RT/F) \ln([Z^{-}]\gamma_{Z^{-}}/[Cl^{-}]\gamma_{Cl^{-}}) - E_{j}$$

= $E + E_{Ag,AgCl}^{0} - E_{j}$
= $E_{Ag,AgZ}^{0} + f(c)$ (1)

for the silver-silver bromate and silver-silver iodate electrodes and

$$E_{c}^{0'} = E - \frac{1}{2}k(\log 2c) - \frac{1}{2}k(4A\sqrt{3c}/2/1 + \sqrt{3c}/2) - (2A\sqrt{c}/1 + \sqrt{c}) + E_{Ag,AgCl}^{0} - E_{j} = E_{Ag,Ag2Z}^{0} + bc$$
(2)

for the silver-silver sulphate, silver-silver chromate and silver-silver dichromate, to the molarity, c = 0. In the foregoing equations, $E_{Ag,AgCl}^{0}$ is the standard potential of the silver-silver chloride electrode, A is the Debye-Hückel constant, and is known over the temperature range under investigation for various water + urea mixtures [12], E is the observed EMF of the cell (A), k is 2.3026(RT/F), E_j is the liquid-junction potential, and bis $\frac{1}{2}k[2\beta_{Cl}-(3/2)\beta_{Z^2}]$ in eqn. (2), where β is the usual constant in the Debye-Hückel expression for the activity coefficient, i.e., $-\log \gamma_i = Az_i^2\sqrt{\mu}/1 + \sqrt{\mu} - \beta_i\mu$, where i is Cl⁻, SO₄²⁻, CrO₄²⁻ or Cr₂O₇²⁻.

As before [1], the values of the liquid-junction potential, E_j , were calculated. It is found that E_j varied in the ranges 0.1–0.3 and 0.1–0.6 mV for the silver-silver bromate and silver-silver iodate, and silver-silver sulphate, silver-silver chromate and silver-silver dichromate electrodes, respectively, in all solvents for all temperatures. The values of $E_{Ag-AgCl}^0$ (molar

Mass %	Z	a	$-10^{3}b$	10 ⁷ c
urea				
11.52	BrO ₃	0.5597	0.9375	2.5
	IO ₃	0.3834	1.4108	- 27.5
	SO ₄	0.6169	1.9633	-10.0
	CrO ₄	0.4995	0.8275	- 37.5
	Cr ₂ O ₇	0.5867	1.6117	65.0
20.31	BrO ₃	0.5687	0.5708	12.5
	IO ₃	0.3928	1.4142	22.5
	SO ₄	0.6305	1.6875	52.5
	CrO₄	0.5174	0.7133	- 30.0
	Cr ₂ O ₇	0.6017	1.5525	47.5
29.64	BrO ₃	0.5776	0.5340	2.5
	IO ₃	0.4063	1.3425	-2.5
	SO ₄	0.6376	1.7817	5.0
	CrO ₄	0.5304	0.69	-10.0
	Cr ₂ O ₇	0.6160	1.6717	35.0
36.83	BrO ₃	0.5817	0.4525	7.5
	IO ₃	0.4149	1.3408	2.5
	SO ₄	0.6457	1.705	15.0
	CrO ₄	0.5443	0.6683	- 55.0
	Cr_2O_7	0.6246	1.5525	17.5

TABLE 1

Constants of eqn. (3) in water + urea mixtures

scale), needed for the calculation of E_c^0 in eqns. (1) and (2) at different temperatures in various compositions of water + urea mixtures, are taken from the literature [12].

By following the usual relations [1,3], standard potentials on the molal (E_m^0) and the mole-fraction (E_N^0) scale were calculated from that on the molar scale (E_c^0) using the density and average molecular weight of the solvent concerned at different temperatures. The values of the standard potentials are expressed as a function of temperature, t (°C)

$$E_m^0 = a + b(t - 25) + c(t - 25)^2$$
(3)

where a, b and c are empirical constants and are given in Table 1 for molal scale in various compositions of water + urea mixtures. The average deviation between the experimental values and those calculated from eqn. (3) is within ± 0.2 mV. The E^0 values at 25°C are listed in Table 2 along with those available in water [1,3].

The standard thermodynamic quantities $(\Delta G^0, \Delta H^0 \text{ and } \Delta S^0)$ for the electrode reaction

$$Ag_xZ(s) + xe \Rightarrow xAg(s) + Z^{x-}$$
(solvated)

TABLE 2

 E^0 values for the Ag(s), Ag_xZ(s), Z^{x-} electrodes on different scales in water and water + urea mixtures at 25°C

E^0	Z	Mass % ure	Mass % urea					
		0	11.52	20.31	29.64	36.83		
$\overline{E_{\iota}^{0}}$	BrO ₃	0.5260 ^a	0.5611	0.5713	0.5815	0.5920		
	IO ₃	0.3288 ^a	0.3848	0.3955	0.4102	0.4198		
	SO ₄	0.6036 ^b	0.6182	0.6334	0.6415	0.6507		
	CrO ₄	0.4491 ^b	0.5008	0.5200	0.5343	0.5494		
	Cr_2O_7	0.5574 ^b	0.5881	0.6043	0.6199	0.6295		
$\sum_{n_i}^{0}$	BrO ₃	0.5262 ^a	0.5597	0.5687	0.5776	0.5871		
	IO3	0.3290 ^a	0.3834	0.3928	0.4063	0.4149		
	SO4	0.6037 ^b	0.6169	0.6305	0.6376	0.6457		
	CrO ₄	0.4492 ^b	0.4995	0.5174	0.5304	0.5443		
	Cr_2O_7	0.5575 ^b	0.5867	0.6017	0.6160	0.6246		
Ξ_N^0	BrO ₃	0.3198 ^a	0.3576	0.3702	0.3832	0.3961		
	IO3	0.1226 ^a	0.1813	0.1944	0.2119	0.2239		
	SO₄	0.3996 ^ь	0.4147	0.4321	0.4432	0.4548		
	CrO₄	0.2428 ^b	0.2974	0.3189	0.3360	0.3535		
	Cr_2O_7	0.3511 ^b	0.3846	0.4032	0.4216	0.4334		

^a From refs. 1 and 3.^b From ref. 11.

and the standard transfer thermodynamic quantities $(\Delta G_t^0, \Delta H_t^0 \text{ and } \Delta S_t^0)$ for the reaction

 $Z^{\prime-}(\text{in water}) \rightarrow Z^{\prime-}(\text{in water} + \text{urea})$

have been evaluated at different temperatures for various solvents. The transfer thermodynamic quantities on a mole-fraction basis at 25°C are shown in Table 3 along with the standard thermodynamic quantities on the molal scale.

An inspection of Table 2 shows that the values of the standard potentials of the Ag-Ag_xZ electrodes are higher in various compositions of water + urea mixtures and increase with the increase in urea content in water lending support to the linear correlation between E^0 and the reciprocal of the dielectric constant of the solvent concerned. The observed increase in the E^0 values of these electrodes with the increase in dielectric constant of the water + urea mixtures as the proportion of urea increases, is in agreement with the electrostatic charging (Born) effect of the media. The higher values of E^0 in various compositions of water + urea mixtures than in water may also be explained by the higher basicity of the water + urea mixtures which decreases the Gibbs free energy of the electrode reaction, by decreasing the free energy of Z^{x-} (solvated), where Z is SO₄, CrO₄ and Cr₂O₇ and x is 2, in these solvents.

TABLE 3

Values of ΔG_m^0 , ΔH_m^0 and ΔS_m^0 for the electrode reaction and ΔG_t^0 , ΔH_t^0 and ΔS_t^0 for the transfer process in water+urea mixtures at 25°C (ΔG^0 and ΔH^0 values in kJ mol⁻¹, ΔS^0 values in J K⁻¹mol⁻¹)

Z	Рага-	Mass % urea					
	meter ^a	0	11.52	20.31	29.64	36.83	
BrO ₃	$-\Delta G_m^0 - \Delta H_m^0 - \Delta S_m^0 - \Delta G_t^0$	50.75	54.01	54.87	55.73	56.65	
	$-\Delta H_m^0$	59.13	80.96	71.29	71.09	69.66	
	$-\Delta S_m^{0}$	28.12	90.46	55.08	51.55	43.66	
	$-\Delta G_{\rm t}^0$		3.65	4.86	6.12	7.36	
	$-\Delta H_{\rm t}^0$		21.71	12.06	11.87	10.48	
	$-\Delta S_t^{0}$		60.50	24.05	19.23	10.38	
	$\lim_{N\to 0}\log({}^{\circ}\gamma_{w})$		-0.639	-0.852	-1.072	- 1.289	
(O ₃	$-\Delta G_m^0 -\Delta H_m^0 -\Delta S_m^0 -\Delta G_i^0 \Delta G_m^0 -\Delta G_m^0 -\Delta G_m^0 -\Delta H_m^0 -\Delta H_m^0 -\Delta H_m^0 -\Delta H_m^0 -\Delta G_m^0 -\Delta H_m^0 -\Delta G_m^0 -\Delta H_m^0 -\Delta G_m^0 -$	31.72	36.99	37.90	39.20	40.03	
	$-\Delta H_m^0$	40.74	77.56	78.57	77.81	78.59	
	$-\Delta S_m^0$	30.27	136.13	136.46	129.54	129.38	
	$-\Delta G_{t}^{0}$		5.66	7.41	8.62	9.77	
	$-\Delta H_{i}$		36.72	37.73	37.01	37.49	
	$-\Delta S_t^{\bullet}$		104.12	103.28	95.2	92.95	
	$\lim_{N\to 0}\log({}^{\circ}\gamma_{\mathbf{w}})$		-0.992	-1.214	-1.509	-1.712	
SO₄	$-\Delta G_m^0$	117.22	119.05	121.68	123.05	124.61	
	$-\Lambda H^0$	186.34	231.96	218.72	225.5	222.66	
	$-\Delta S_m^0$ - ΔG_t^0 - ΔH_t^0 - ΔS_t^0	231.97	378.88	325.66	343.84	329.04	
	$-\Delta G_{\rm t}^0$		2.66	6.02	8.16	10.4	
	$-\Delta H_{t}^{0}$		45.86	32.35	39.15	36.39	
	$-\Delta S_t^0$		144.97	88.34	103.96	87.22	
	$\lim_{N\to 0} \log({}^{s}\gamma_{w})$		-0.4665	- 1.0548	-1.4301	-1.822	
CrO ₄	$-\Delta G_m^0 - \Delta H_m^0 - \Delta S_m^0 - \Delta G_t^0 - \Delta G_t^0 - \Delta H_t^0$	86.69	96.39	99.85	102.36	105.04	
	$-\Delta H_m^0$	151.75	143.98	140.87	142.04	143.47	
	$-\Delta S_m^0$	219.3	159.69	137.66	133.16	129.03	
	$-\Delta G_{t}^{0}$		10.54	14.67	17.99	21.36	
	$-\Delta H_{t}^{0}$		6.85	9.89	8.71	7.29	
	$-\Delta S_t^{\circ}$		58.38	82.5	89.58	96.19	
	$\lim_{N\to 0} \log({}^{s}\gamma_{w})$		-1.846	-2.573	- 3.151	- 3.743	
Cr ₂ O ₇	$-\Delta G_m^0 -\Delta H_m^0 -\Delta S_m^0 -\Delta G_t^0 -\Delta H^0$	107.50	113.22	116.12	118.88	120.54	
	$-\Delta H_m^0$	188.01	205.91	205.4	215.02	209.82	
	$-\Delta S_m^0$	269.85	311.04	299.6	322.61	299.61	
	$-\Delta G_{t_{o}}^{0}$		6.46	10.05	13.61	15.88	
	$-\Delta m_{\rm t}$		17.77	17.34	26.98	22.34	
	$-\Delta S_{\rm t}^{\rm 0}$		37.94	24.44	44.86	21.64	
	$\lim_{N\to 0} \log({}^{s}\gamma_{w})$		-1.133	- 1.761	- 2.383	-2.782	

^a Uncertainties in the values of ΔG^0 , ΔH^0 and ΔS^0 at 25°C are of the order of ± 0.03 and ± 0.5 kJ mol⁻¹ and ± 2 J K⁻¹ mol⁻¹, respectively.

A perusal of Table 2 shows that the E^0 values of the Ag, Ag_xZ, Z^{x-} electrodes at 25°C follow the order: $SO_4 > Cr_2O_7 > BrO_3 > CrO_4 > IO_3$ in both water and water + urea mixtures, where SO_4 , Cr_2O_7 , etc., are the anion of the corresponding electrode material to which the electrode is reversible and these represent corresponding electrodes of the second kind. It can be concluded that the strength of solvation of the anion (irrespective of its size) to which the electrode is reversible (since the cation of the electrode material is the same) is the deciding factor in explaining the relative values of the standard potentials of the electrodes of the second kind.

It is know that the Gibbs free energy of transfer is an important index of the differences in interactions of the ions and solvent molecules in the two different media. As can be seen from Table 3 the values of ΔG_t^0 for the transfer of Z^{x-} ions from water to water + urea mixtures appear to be negative and become increasingly negative with increasing urea content in water + urea mixtures. The negative values of ΔG_t^0 indicate that the transfer of Z^{x-} ions from water to water + urea mixtures is favourable. Thus, Z^{x-} ions appear to be in a lower Gibbs energy state and, hence, more strongly stabilised in water + urea mixtures. It is known that all structure-forming processes, including solvation of ions, are exothermic and accompanied by a decrease in entropy, whereas the structure breaking processes, including desolvation of ions, are endothermic and accompanied by entropy gain. The negative values of ΔH_t^0 and ΔS_t^0 for BrO_3^- , IO_3^- , SO_4^{2-} and $\text{Cr}_2\text{O}_7^{2-}$ and the positive values of ΔH_t^0 and ΔS_t^0 for CrO_4^{2-} ion in the mixed solvents substantiate this view.

The primary medium effect which results from a difference of the ion-solvent interactions at infinite dilution in each solvent can be represented by

$$\lim_{N \to 0} (\log {}^{s} \gamma_{w}) = x \left[\left(E_{N}^{0} \right)_{w} - \left(E_{N}^{0} \right)_{s} \right] / 2.3026 (RT/F)$$

TABLE 4

Solubility product constants on the molar scale (K_{so}^c) of Ag_xZ in water and water + urea mixtures at 25°C

	Mass % u	lass % urea				
	0	11.52	20.31	29.64	36.83	
$\overline{Z = BrO_3}$				······································		
$10^{5}K_{so}^{c}$	2.40	10.2	10.3	13.6	14.3	
$Z = IO_3$						
$10^8 K_{so}^c$	1.096	10.73	10.95	17.25	17.52	
$Z = SO_4$						
$10^{6}K_{so}^{c}$	0.34	0.89	1.32	1.96	1.97	
$Z = CrO_4$						
$10^{11} K_{so}^{c}$	0.14	9.84	19.52	47.04	73.88	
$Z = Cr_2O_7$						
$10^8 K_{so}^c$	0.69	8.59	13.7	36.5	37.7	

where the limit term indicates the primary medium effect and x = 1 for BrO₃ or IO₃ and x = 2 for SO₄, CrO₄ or Cr₂O₇ ions. As the magnitude of this effect indicates the stabilisation of the ion in the solvent concerned, the resulting negative magnitude of this quantity (Table 3) suggests that the escaping tendency of the ions is lower in water + urea mixtures than in pure water. This is consistent with the conclusions based on the fact that the Z^{x-}

TABLE 5

Constants of eqn. (5) for the molar (c) and molal (m) scales in water + urea mixtures for different silver salts

	q	Wt% urea					
		11.52	20.31	29.64	36.83		
BrO ₃		· · · · · · · · · · · · · · · · · · ·	<u>-</u>				
A	с	- 1447.3761	- 1928.9661	-2271.2833	- 2049.8242		
$10^{3}B$		872.471	2493.96	3756.3812	3036.2997		
σ		0.047	0.062	0.074	0.067		
A	m	-1470.2105	- 1955.1526	- 2304.3433	- 2087.2757		
10 ³ B		926.1043	2536.2116	3801.645	3069.1217		
σ		0.048	0.063	0.075	0.065		
)3							
Ā	с	- 1668.9855	- 1541.5161	- 1850.6464	- 1592.2064		
10 ³ B		-1367.884	- 1777.5977	- 563.74	-1410.288		
σ		0.054	0.050	0.060	0.052		
A	m	- 1694.9874	- 1568.1828	-1883.727	- 1629.6579		
10 ³ B		-1304.0327	- 1732.4257	- 518.5707	-1366.8287		
σ		0.055	0.051	0.061	0.053		
D ₄							
A	с	737.3833	286.76051	-179.8338	281.95908		
10 ³ B		- 8515.1257	- 6827.647	- 5091.906	- 6640.9857		
σ		0.024	0.009	0.006	0.009		
A	m	711.3814	260.57408	214.22714	241.84097		
10 ³ B		- 8452.0012	- 6784.142	- 5051.5212	- 6588.862		
σ		0.023	0.009	0.007	0.008		
∙O₄							
A	с	- 3951.3814	~ 4088.228	-4587.3252	- 4063.4848		
10 ³ B		3238.8217	4010.0633	6061.478	4491.5509		
σ		0.093	0.098	0.095	0.098		
A	m	3977.5679	- 4116.8966	-4621.7187	-4100.9352		
10 ³ B		3302.3269	4062.0524	6111.0344	4535.2499		
σ		0.093	0.099	0.096	0.099		
207							
Ā	с	- 411.57733	- 489.53136	- 642.40683	- 384.52325		
10 ³ B		- 5650.978	5189.5312	- 4268.253	- 5121.6996		
σ		0.013	0.016	0.021	0.012		
A	m	- 437.76376	- 515.53326	- 676.80017	- 393.23906		
10 ³ B		- 5587.473	- 5146.4067	-4218.697	- 5176.6589		
σ		0.014	0.014	0.022	0.013		

ions are more strongly stabilised in water + urea mixtures than in aqueous medium.

The thermodynamic solubility product, K_{so}^0 , of Ag_xZ (Z = BrO₃, IO₃ and x = 1; or Z = SO₄, CrO₄, Cr₂O₇ and x = 2) in water + urea mixtures have been calculated at different temperatures from the values of standard potentials by means of the equation

$$\ln K_{so}^{0}(Ag_{x}Z) = \left[E_{c}^{0}(Ag_{-}Ag_{x}Z) - E_{c}^{0}(Ag_{-}Ag^{+}) \right] xF/RT$$
(4)

where $E_c^0(Ag-Ag_xZ)$ is the standard molar potential of the Ag, Ag_xZ , Z^{x-} electrode and $E_c^0(Ag-Ag^+)$ is that of the silver electrode obtained from the literature [5]. The values for K_{so}^0 on the molar (K_{so}^c) scale are shown in Table 4 at 25°C only, along with those available in water for the sake of comparison. The values of K_{so}^0 on the molal scale (K_{so}^m) were calculated from K_{so}^c/ρ^2 , where ρ is the density of the mixed solvent. The solubility product data in any solvent were fitted by the method of least-squares to the equation

$$\log K_{so}^{q}(\mathrm{Ag}_{x}Z) = A/T + B$$
(5)

where q is c or m and T (K) is any temperature. The constants A and B in eqn. (5) are shown in Table 5 along with the values of σ , the standard deviation of the least-squares fit; the correlation coefficient for these relations is 0.997.

An inspection of Table 5 shows that these silver salts are more soluble in water + urea mixtures than in water and the solubility increases with increasing urea content in the mixed solvent. The observed increase in K_{so}^{0} values with the increase in dielectric constant of the mixed solvents as the proportion of urea increases is in agreement with the electrostatic charging effect of the media.

REFERENCES

- 1 U.N. Dash and M.C. Padhi, Thermochim. Acta, 39 (1980) 335; 45 (1981) 245.
- 2 U.N. Dash and M.C. Padhi, J. Electroanal. Chem., 122 (1981) 147.
- 3 U.N. Dash and M.C. Padhi, Thermochim. Acta, 55 (1982) 315; 56 (1982) 113; 60 (1983) 243.
- 4 R.C. Das, U.N. Dash and K.N. Panda, Electrochim. Acta, 24 (1979) 99.
- 5 U.N. Dash, B.B. Das, U.K. Biswal, T. Panda, N.K. Purohit, D.K. Rath and S. Bhattacharya, Thermochim. Acta, 61 (1983) 379; 63 (1983) 261; 71 (1983) 199.
- 6 U.N. Dash, B.B. Das, U.K. Biswal and T. Panda, Thermochim. Acta, 70 (1983) 383.
- 7 U.N. Dash, B.B. Das, U.K. Biswal and T. Panda, Electrochim. Acta, 28 (1983) 1273.
- 8 U.N. Dash and S.K. Nayak, Can. J. Chem., 59 (1981) 3030.
- 9 U.N. Dash and S.K. Nayak, Can. J. Chem., 58 (1980) 992.
- 10 U.N. Dash, B.B. Das, U.K. Biswal and T. Panda, Thermochim. Acta, 80 (1984) 331.
- 11 U.N. Dash, B.B. Das, U.K. Biswal and T. Panda, Thermochim. Acta, 89 (1985) 281.
- 12 K.K. Kundu and K. Majumdar, J. Chem. Soc., Faraday. Trans. 1, 69 (1973) 806, 1422.